35 research outputs found

    Excitation Spectra in a Heavy-Light Meson-Meson System

    Full text link
    A system of two static quarks, at fixed distances r, and two light quarks is studied on an anisotropic lattice. Excitations by operators emphasizing quark or gluon degrees of freedom are examined. The maximum entropy method is applied in the spectral analysis. These simulations ultimately aim at learning about mechanisms of hadronic interaction.Comment: 5 pages, latex (uses espcrc2, psfig), contriubution to: Workshop on Lattice Hadron Physics (LHP2001), Cairns, July 9-18, 200

    Meson-Meson Scattering in Lattice QED_2+1

    Full text link
    Scattering phase shifts of a meson-meson system in staggered 3-dimensional lattice QED are computed. The main task of the simulation is to obtain a discrete set of two-body energy levels. These are extracted from a 4-point time correlation matrix and then used to obtain scattering phase shifts. The results for the l=0 and l=2 partial waves are consistent with short- range repulsion and intermediate-range attraction of the residual meson- meson interaction

    On the I=2 channel pi-pi interaction in the chiral limit

    Full text link
    An approximate local potential for the residual pi+ pi+ interaction is computed. We use an O(a**2) improved action on a coarse 9x9x9x13 lattice with approximately a=0.4fm. The results present a continuation of previous work: Increasing the number of gauge configurations and quark propagators we attempt extrapolation of the pi+ pi+ potential to the chiral limit.Comment: LATTICE98(spectrum) LaTeX2e, 3 pages, 3 eps figure

    Extraction of hadron-hadron potentials on the lattice within 2+1 dimensional QED

    Get PDF
    A potential between mesons is extracted from 4-point functions within lattice gauge theory taking 2+1 dimensional QED as an example. This theory possesses confinement and dynamical fermions. The resulting meson-meson potential has a short-ranged hard repulsive core due to antisymmetrization. The expected dipole-dipole forces lead to attraction at intermediate distances. Sea quarks lead to a softer form of the total potential.Comment: 12 pages, uuencoded tar-compressed postscript fil

    On the nature of the residual meson-meson interaction from simulations with a QED2+1{}_{2+1} model

    Get PDF
    A potential between mesons is extracted from 4-point functions within lattice gauge theory taking 2+1 dimensional QED as an example. This theory possesses confinement and dynamical fermions. The resulting meson-meson potential has a short-ranged hard repulsive core and the expected dipole-dipole forces lead to attraction at intermediate distances. Sea quarks lead to a softer form of the total potential.Comment: 4 pages, uuencoded tar-compressed postscript file, contribution to Lattice'9

    Two-body spectra of pseudoscalar mesons with an O(a2)O(a^2)--improved lattice action using Wilson fermions

    Get PDF
    We extend our calculations with the second-order tree-level and tadpole improved next-nearest-neighbor action to meson-meson systems. Correlation matrices built from interpolating fields representing two pseudoscalar mesons (pion-pion) with relative momenta p are diagonalized, and the mass spectrum is extracted. Link variable fuzzing and operator smearing at both sinks and sources is employed. Calculations are presented for two values of the hopping parameter. The spectrum is used to discuss the residual interaction in the meson-meson system.Comment: 3 pages, 4 EPS figures, Poster presented at "Lattice'97", to appear in the proceeding

    Potentials between heavy-light mesons from lattice and inverse scattering theory

    Full text link
    We extend our investigation of heavy-light meson-meson interactions to a system consisting of a heavy-light meson and the corresponding antiparticle. An effective potential is obtained from meson-antimeson Green-functions computed in a quenched simulation with staggered fermions. Comparisons with a simulation using an O(a2)O(a^2) tree-level and tadpole improved gauge action and a full QCD simulation show that lattice discretization errors and dynamical quarks have no drastic influence. Calculations from inverse scattering theory propose a similar shape for KKˉK\bar{K} potentials.Comment: 3 pages, 5 EPS figures, Poster presented at "Lattice'97", to appear in the proceeding

    Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method

    Get PDF
    We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss practical issues of the approach.Comment: 11 pages, 30 figure files (eps), some references added and updated, requires REVTeX 4.0 and prerequisites (AMS-LaTeX 2.0, graphicx, dcolumn, bm) see http://publish.aps.org/revtex4

    Meson-meson interactions -- from static to dynamic valence quarks

    Full text link
    A method for the extraction of an effective meson-meson potential from Green functions, which can be obtained from a lattice simulation, is presented. Simulations are carried out for compact QED and QCD in four dimensions using the quenched approximation and the hopping parameter expansion. In a further study, a heavy-light meson is considered employing a conjugate gradient algorithm for the light propagators. Due to the Pauli exclusion principle, the results for QED indicate the existence of a hard core, but for QCD there is strong attraction at small meson distances.Comment: 4 pages, uuencoded gziped postscript file, contribution to LATTICE'95, Melbourne, Australia (list of authors completed

    Residual meson-meson interaction from lattice gauge simulation in a simple QED model

    Full text link
    The residual interaction for a meson-meson system is computed utilizing the cumulant, or cluster, expansion of the momentum-space time correlation matrix. The cumulant expansion serves to define asymptotic, or free, meson-meson operators. The definition of an effective interaction is then based on a comparison of the full (interacting) and the free (noninteracting) time correlation matrices. The proposed method, which may straightforwardly be transcribed to other hadron-hadron systems, here is applied to a simple 2+1 dimensional U(1) lattice gauge model tuned such that it is confining. Fermions are treated in the staggered scheme. The effective interaction exhibits a repulsive core and attraction at intermediate relative distances. These findings are consistent with an earlier study of the same model utilizing L\"{u}scher's method where scattering phase shifts are obtained directly.Comment: 28 pages, compressed postscript fil
    corecore